Analysis of Students' Difficulties Based on Epistemological Aspects In Function Limit Proving Problem
Main Article Content
Abstract
This study aims to analyse the mathematical proof ability and learning difficulties of students in understanding Limit Function material, focusing on epistemological aspects. Success in proving mathematics is at the core of understanding concepts in mathematics, but this ability has not been fully internalised in students. The descriptive method was used in this study, involving nine prospective mathematics teachers at Pancasakti Tegal University who took the Real Analysis course. Data were collected through: (1) mathematical proof ability tests; (2) observation; (3) interviews; and (4) documentation. The results of the analysis show that there are five types of student difficulties in the context of epistemology, namely: a) Ability to understand and apply ideas; b) Difficulty visualising objects; c) Difficulty determining principles; d) Difficulty understanding problems; and e). Inability to prove math. In particular, students experience challenges in starting the proof process, using known definitions and principles, and tend to focus on what must be proven without a clear initial step. These findings are expected to provide insights into the development of learning processes and teaching materials, as well as improve mathematical proof skills among mathematics education students.
Article Details
References
Anthony, M. (2017). Writing for Publication. In Home Healthcare Now (Vol. 35, Issue 6). https://doi.org/10.1097/NHH.0000000000000558
Avalos, M. A., Bengochea, A., & Secada, W. G. (2015). Reading Mathematics: More than Words and Clauses; More than Numbers and Symbols on a Page. 49–74. https://doi.org/10.1007/978-3-319-14735-2_3
Cusmariu, A. (2022). The Private Language Argument: Another Footnote to Plato? Symposion, 9(2), 191–222. https://doi.org/10.5840/symposion20229214
Dj Pomalato, S. W., Ili, L., Ningsi, B. A., Fadhilaturrahmi, Hasibuan, A. T., & Primayana, K. H. (2020). Student error analysis in solving mathematical problems. Universal Journal of Educational Research, 8(11), 5183–5187. https://doi.org/10.13189/ujer.2020.081118
Häggström, J., Liljekvist, Y., Ärlebäck, J. B., Fahlgren, M., & Olande, O. (2018). Perspectives on the rofessional development of mathematics teachers (Issue 13). SMDF.
Hodiyanto, H. (2017). Analisis Kesalahan Mahasiswa Semester V dalam Mengerjakan Soal Pengantar Analisis Real. Edu Sains: Jurnal Pendidikan Sains & Matematika, 5(1), 33. https://doi.org/10.23971/eds.v5i1.641
Inarejos, O., Kirnev, D. C. B., Consani, A. C. C., & das Dores Savioli, A. M. P. (2022). Some Theoretical References Related to Advanced Mathematical Thinking. Acta Scientiae, 24(3), 216–243. https://doi.org/10.17648/acta.scientiae.7021
Isnani, Waluya, S. B., Dwijanto, & Asih, T. S. N. (2025). Grow proof of ability in students through mathematical working space strategies. Edelweiss Applied Science and Technology, 9(4), 1240–1251. https://doi.org/10.55214/25768484.v9i4.6229
Isnani, Waluya, S. B., & Rochmad. (2020). Problem posing in the proof process involves identifying creative thinking in mathematics. Journal of Physics: Conference Series, 1657(1). https://doi.org/10.1088/1742-6596/1657/1/012066
Isnani, Waluya, S. B., Rochmad, Dwiyanto, & Asih, T. S. N. (2021). Analysis of problem-solving difficulties at the limits of sequences. Journal of Physics: Conference Series, 1722(1). https://doi.org/10.1088/1742-6596/1722/1/012033
Karsten, N., Jacobsen, F. K., Eiken, K. J., Nestmann, U., & Villadsen, J. (2023). PROOFBUDDY: A Proof Assistant for Learning and Monitoring. Electronic Proceedings in Theoretical Computer Science, EPTCS, 382(Tfpie), 1–21. https://doi.org/10.4204/EPTCS.382.1
Kartini, & Suanto, E. (2016). Analisa Kesulitan Pembuktian Matematis Mahasiswa Pada Mata Kuliah Analisis Real. SEMIRATA 2015 Bidang MIPA BKS-PTN Barat, 1(1), 189–199. http://jurnal.untan.ac.id/index.php/semirata2015/article/view/14066/13275
Khairani, Mukhni, & Aini, F. Q. (2019). Error analysis of college students in calculus learning. Journal of Physics: Conference Series, 1280(4). https://doi.org/10.1088/1742-6596/1280/4/042019
Lesseig, K. (2016). Investigating mathematical knowledge for teaching proof in professional development. International Journal of Research in Education and Science, 2(2), 253–270. https://doi.org/10.21890/ijres.13913
Lestari, A. (2021). Analisis Kemampuan Pemahaman Konsep Mahasiswa Pgmi Iain Bengkulu Mata Kuliah Matematika 2 Berdasarkan Teori Apos. Angewandte Chemie International Edition, 6(11), 951–952.
Martínez-miraval, M. A. (2025). Razonamiento covariacional y GeoGebra en la representación de relaciones funcionales al simular el llenado de recipientes Covariational reasoning and GeoGebra in the representation of functional relationships when simulating container filling. 18(1), 65–74.
Melhuish, K., Larsen, S., & Cook, S. (2019). When Students Prove a Theorem without Explicitly Using a Necessary Condition: Digging into a Subtle Problem from Practice. International Journal of Research in Undergraduate Mathematics Education, 5(2), 205–227. https://doi.org/10.1007/s40753-019-00090-9
Moore, R. C. (1994). Making the transition to formal proof*. 249–266.
Nagle, C., Tracy, T., Adams, G., & Scutella, D. (2017). The notion of motion: covariational reasoning and the limit concept. International Journal of Mathematical Education in Science and Technology, 48(4), 573–586. https://doi.org/10.1080/0020739X.2016.1262469
Ndemo, Z., Zindi, F., & Mtetwa, D. (2017). Mathematics Undergraduate Student Teachers’ Conceptions of Guided Inductive and Deductive Teaching Approaches. Journal of Curriculum and Teaching, 6(2), 75. https://doi.org/10.5430/jct.v6n2p75
Oktaviyanthi, R., Herman, T., & Dahlan, J. A. (2018). How does a pre-service mathematics teacher prove the limit of a function by formal definition? Journal on Mathematics Education, 9(2), 195–212. https://doi.org/10.22342/jme.9.2.5684.195-212
Pg. Johari, P. M. A. R., & Shahrill, M. (2020). The Common Errors in the Learning of the Simultaneous Equations. Infinity Journal, 9(2), 263–274. https://doi.org/10.22460/infinity.v9i2.p263-274
Pimm, D. (2010). Another Psychology of Mathematics Education. In Constructing Mathematical Knowledge: https://doi.org/10.4324/9780203454206_chapter_9
Raman, M. (2003). Key ideas: What are they, and how can they help us understand how people view proof? Educational Studies in Mathematics, 52(3), 319–325. https://doi.org/10.1023/A:1024360204239
Saavedra, J., & Gutierrez, M. (2020). Peru: A wholesale reform fueled by an obsession with learning and equity. In Audacious Education Purposes: How Governments Transform the Goals of Education Systems. https://doi.org/10.1007/978-3-030-41882-3_6
Savic, M. (2015). On Similarities and Differences Between Proving and Problem Solving. Journal of Humanistic Mathematics, 5(2), 60–89. https://doi.org/10.5642/jhummath.201502.06
Savic, M. (2016). Mathematical problem-solving via Wallas’ four stages of creativity: Implications for the undergraduate classroom. Mathematics Enthusiast, 13(3).
Selden, A., & Selden, J. (2012). Students ’ Proving Difficulties: Annie Selden and John Selden. November 2014.
Shahrill, M., & Prahmana, R. C. I. (2018). The Connection Commonalities in the Mathematical Content of Lesson Sequences. Journal of Physics: Conference Series, 1097(1). https://doi.org/10.1088/1742-6596/1097/1/012136
Slavíčková, M., & Vargová, M. (2023). Differences in the Comprehension of the Limit Concept Between Prospective Mathematics Teachers and Managerial Mathematicians During Online Teaching. Communications in Computer and Information Science, 1779 CCIS, 168–183. https://doi.org/10.1007/978-3-031-29800-4_13
Stolet, Y., & Holmowaia, A. S. (2020). Beyond the Horizon of Media Ontologies. In Galactica Media: Journal of Media Studies (Vol. 2, Issue 1). https://doi.org/10.46539/gmd.v2i1.91
Sumarmo. (2014). BAB II Penalaran Matematis. Universitas Muhamadiyah Malang, 1987, 6–12.
Sundawan, M. D., Dewi, L. K. D., & Noto, M. S. (2018). Kajian Kesulitan Belajar Mahasiswa dalam Kemampuan Pembuktian Matematis Ditinjau dari Aspek Epistemologi pada Mata Kuliah Geometri Transformasi. Inspiramatika, 4(1), 13–26. http://e-jurnal.unisda.ac.id/index.php/Inspiramatika/article/view/868
Tarida, L., Budiarto, M. T., & Lukito, A. (2025). The potential problem to explore students’ functional thinking in mathematical problem-solving. Journal on Mathematics Education, 16(1), 275–298. https://doi.org/10.22342/jme.v16i1.pp275-298
Utari, T., & Hartono, H. (2019). Muatan penalaran dan pembuktian matematis pada buku teks matematika SMA kelas X Kurikulum 2013. Jurnal Riset Pendidikan Matematika, 6(1), 1–13. https://doi.org/10.21831/jrpm.v6i1.17002
Wasserman, N., Weber, K., Villanueva, M., & Mejia-Ramos, J. P. (2018). Mathematics teachers’ views about the limited utility of real analysis: A transport model hypothesis. Journal of Mathematical Behaviour, 50(December 2017), 74–89. https://doi.org/10.1016/j.jmathb.2018.01.004
Zazkis, D., & Villanueva, M. (2016). Student Conceptions of What It Means to Base a Proof on an Informal Argument. International Journal of Research in Undergraduate Mathematics Education, 2(3), 318–337. https://doi.org/10.1007/s40753-016-0032-3
Zazkis, D., Weber, K., & Mejía-Ramos, J. P. (2015). Two proven strategies of highly successful mathematics majors. Journal of Mathematical Behaviour, 39, 11–27. https://doi.org/10.1016/j.jmathb.2015.04.003